LahmanData {Lahman} | R Documentation |
This dataset gives a consise description of the data files in the Lahman package. It may be useful for computing on the various files.
data(LahmanData)
A data frame with 24 observations on the following 5 variables.
file
name of dataset
class
class of dataset
nobs
number of observations
nvar
number of variables
title
dataset title
This dataset is generated using vcdExtra::datasets(package="Lahman")
with some post-processing.
data(LahmanData)
# find ID variables in the datasets
IDvars <- lapply(LahmanData[,"file"], function(x) grep('.*ID$', colnames(get(x)), value=TRUE))
names(IDvars) <- LahmanData[,"file"]
str(IDvars)
## List of 24
## $ AllstarFull : chr [1:5] "playerID" "yearID" "gameID" "teamID" ...
## $ Appearances : chr [1:4] "yearID" "teamID" "lgID" "playerID"
## $ AwardsManagers : chr [1:4] "managerID" "awardID" "yearID" "lgID"
## $ AwardsPlayers : chr [1:4] "playerID" "awardID" "yearID" "lgID"
## $ AwardsShareManagers: chr [1:4] "awardID" "yearID" "lgID" "managerID"
## $ AwardsSharePlayers : chr [1:4] "awardID" "yearID" "lgID" "playerID"
## $ Batting : chr [1:4] "playerID" "yearID" "teamID" "lgID"
## $ BattingPost : chr [1:4] "yearID" "playerID" "teamID" "lgID"
## $ Fielding : chr [1:4] "playerID" "yearID" "teamID" "lgID"
## $ FieldingOF : chr [1:2] "playerID" "yearID"
## $ FieldingPost : chr [1:4] "playerID" "yearID" "teamID" "lgID"
## $ HallOfFame : chr [1:2] "hofID" "yearID"
## $ Managers : chr [1:4] "managerID" "yearID" "teamID" "lgID"
## $ ManagersHalf : chr [1:4] "managerID" "yearID" "teamID" "lgID"
## $ Master : chr [1:9] "lahmanID" "playerID" "managerID" "hofID" ...
## $ Pitching : chr [1:4] "playerID" "yearID" "teamID" "lgID"
## $ PitchingPost : chr [1:4] "playerID" "yearID" "teamID" "lgID"
## $ Salaries : chr [1:4] "yearID" "teamID" "lgID" "playerID"
## $ Schools : chr "schoolID"
## $ SchoolsPlayers : chr [1:2] "playerID" "schoolID"
## $ SeriesPost : chr "yearID"
## $ Teams : chr [1:5] "yearID" "lgID" "teamID" "franchID" ...
## $ TeamsFranchises : chr "franchID"
## $ TeamsHalf : chr [1:4] "yearID" "lgID" "teamID" "divID"
# vector of unique ID variables
unique(unlist(IDvars))
## [1] "playerID" "yearID" "gameID" "teamID" "lgID"
## [6] "managerID" "awardID" "hofID" "lahmanID" "lahman40ID"
## [11] "lahman45ID" "retroID" "holtzID" "bbrefID" "schoolID"
## [16] "franchID" "divID"
# which datasets have playerID?
names(which(sapply(IDvars, function(x) "playerID" %in% x)))
## [1] "AllstarFull" "Appearances" "AwardsPlayers"
## [4] "AwardsSharePlayers" "Batting" "BattingPost"
## [7] "Fielding" "FieldingOF" "FieldingPost"
## [10] "Master" "Pitching" "PitchingPost"
## [13] "Salaries" "SchoolsPlayers"
################################################
# Visualize relations among datasets via an MDS
################################################
# jaccard distance between two sets; assure positivity
jaccard <- function(A, B) {
max(1 - length(intersect(A,B)) / length(union(A,B)), .00001)
}
distmat <- function(vars, FUN=jaccard) {
nv <- length(vars)
d <- matrix(0, nv, nv, dimnames=list(names(vars), names(vars)))
for(i in 1:nv) {
for (j in 1:nv) {
if (i != j) d[i,j] <- FUN(vars[[i]], vars[[j]])
}
}
d
}
# do an MDS on distances
distID <- distmat(IDvars)
config <- cmdscale(distID)
pos=rep(1:4, length=nrow(config))
plot(config[,1], config[,2], xlab = "", ylab = "", asp = 1, axes=FALSE,
main="MDS of ID variable distances of Lahman tables")
abline(h=0, v=0, col="gray80")
text(config[,1], config[,2], rownames(config), cex = 0.75, pos=pos, xpd=NA)